Kalman Filter untuk Mengurangi Derau Sensor Accelerometer pada IMU Guna Estimasi Jarak

Muhammad Ari Roma Wicaksono, Freddy Kurniawan, Lasmadi Lasmadi

Abstract

This study aims to develop a Kalman filter algorithm in order to reduce the accelerometer sensor noise as effectively as possible. The accelerometer sensor is one part of the Inertial Measurement Unit (IMU) used to find the displacement distance of an object. The method used is modeling the system to model the accelerometer system to form mathematical equations. Then the state space method is used to change the system modeling to the form of matrix operations so that the process of the data calculating to the Kalman Filter algorithm is not too difficult. It also uses the threshold algorithm to detect the sensor's condition at rest. The present study had good results, which of the four experiments obtained with an average accuracy of 93%. The threshold algorithm successfully reduces measurement errors when the sensor is at rest or static so that the measurement results more accurate. The developed algorithm can also detect the sensor to move forward or backward.

Keywords

Accelerometer; IMU; Kalman Filter; Noise

Full Text:

PDF

References

Nugroho, T. A., Hutagalung, M., Susantio, M. A., Jeremias, V., & Yonata, Y. (2018). Implementasi Sensor Fusion untuk Peningkatan Akurasi Sensor GPS. JUPITER (JURNAL PENDIDIKAN TEKNIK ELEKTRO), 3(1), 26-36

Farida, A., & Rosalina, F. (2020). Pelatihan Dasar-Dasar Pengoperasian GPS Garmin Bagi Mahasiswa Fakultas Pertanian Universitas Muhammadiyah Sorong. Abdimas: Papua Journal of Community Service, 2(1), 47-56

Siciliano, B., & Khatib, O. (2008). Springer Handbook of Robotics. Heidelberg: Springer

Lasmadi, Cahyadi, A., & Hidayat, R. (2016). Implementasi Kalman Filter untuk Navigasi Quadrotor Berbasis Sensor Accelerometer. Prosiding SENIATI, 242-B.

Naval Aviation School Command. (2017). Introduction to Air Navigation. Florida: NAVAVSCOLSCOM-SG-200.

Jonathan, N., & Rippun, F. (2016). Implementasi Filter Kalman Pada Sistem Sensor Inertial Measurement Unit (Imu) Quadcopter. Jurnal Elektro Unika Atma Jaya, 9(2), 99-110.

Suryanti, D. I. (2017, Desember). Inertial Measurement Unit (IMU) pada Sistem Pengendali Satelit. Media Dirgantara Vol.12 No.2 Desember 2017, hal. 7-10.

Alma’i, V. R., Wahyudi, W., & Setiawan, I. (2011). Aplikasi Sensor Accelerometer Pada Deteksi Posisi (Doctoral dissertation, Jurusan Teknik Elektro Fakultas Teknik).

Lasmadi. (2019, April). Sistem Navigasi Quadrotor Berbasis IMU dengan Kalman Filter Tuning. ELKHA, Vol. 11, No.1, hal. 39-46.

Syarifudin, A. N., Merdekawati, D. A., & Apriliani, E. (2018, Maret). Perbandingan Metode Kalman Filter, Extended Kalman Filter, dan Ensemble Kalman Filter pada Model Penyebaran Virus HIV/AIDS. Limits: Journal of Mathematics and Its Applications Vol. 15, No. 1, hal. 17-29.

Becker, A. (2018). Kalman Filter. Dipetik Juli 1, 2020, dari KalmanFilter.NET: https://www.kalmanfilter.net/default.aspx

Bosch Sensortec GmbH. (2018, Oktober). Data Sheet BMI160 Small, Low Power Inertial Measurement Unit. Reutlingen, Baden-Wuerttemberg, Jerman.

Soebhakti, H., & Fatekha, R. A. (2014). Implementasi Kalman Filter Pada Sensor Jarak Berbasis Ultrasonik. Jurnal Integrasi, 6(2).

Article Metrics

Abstract view: 36 times
Download     : 17   times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks

  • There are currently no refbacks.