DETEKSI KEDIPAN MATA PADA VIDEO MENGGUNAKAN OPEN CV

Haruno Sajati, Anggraini Kusumaningrum, Bagus Budi Utomo

Abstract

In the development of technology in the current era is one of the most rapid progress, it is marked by almost all managers of data and information has been done with the computer because of the increasingly diverse information issues handled, Detection of objects is one of the most important early stages before Done object recognition process. Eye blink detection can be used to open a new file or an application. In this research use case detection eye blinking on video using OpenCV to open notepad application. The blink detection uses the haar cascade classifier method for realtime detection and the  OpenCV Library. The first step determines the pattern 1111100000. Next enter the video sample avi format to match with a predetermined pattern. In this program the system managed to detect the eye according to the pattern by circling the eye area when the eyes are open or literate and when the eyes closed or brake there is no circle in the eye area for the correct video sample.

Keywords

Blind Detection On Video , Haar Cascade Classifier, OpenCV

References

Agustian Indra & Sulistyaningsih, 2012. Implementasi Pengolahan Citra Berbasis Metode Contours Finding Dan Surf Untuk Deteksi Kedip Mata, Jurusan Teknik Elektro Universitas Bengkulu, Proceeding Semantik 2012, Bengkulu.

Ardianto Andi, dkk, 2014. Aplikasi Pengembalian Buku Mandiri Menggunakan Segmentasi Citra Cover Buku, Jurnal System Vol. 3 No 1, STMIK STIKOM, Surabaya.

Jogiyanto HM., MBA., Akt., Ph.D. 2005. Analisis dan Desain, Penerbit Andi. Yogyakarta.

Kadir Abdul & Susanto Adhi. 2013. Teori dan Aplikasi Pengolahan Citra, Penerbit Andi. Yogyakarta.

Kusmanto RD, dkk, 2012. Aplikasi Sensor Vision untuk Deteksi Multiface dan Menghitung Jumlah Orang, Jurusan Teknik Komputer. Politeknik Negeri Sriwijaya, Seminar Teknologi Informasi dan Komunikasi Terapan 2012 (semantik 2012), Palembang.

Putra Darma, 2010. Pengolahan Citra, Penerbit Andi. Yogyakarta.

Santoso Hadi & Harjoko Agus, 2013. Haar Cascade Classifier dan Algoritma Adaboost untuk Deteksi Banyak Wajah Dalam Ruang Kelas, Universitas Gadjah Mada, Jurnal System Vol 6 No 2, Yogyakarta

Syarif Muhammad & Wijanarto, 2015. Deteksi Kedipan Mata Dengan Haar Cascade Classifier dan Contour untuk Password Login Sistem, Teknik Informatika Universitas Dian Nuswantoro, Techno COM, Vol 14 No 4, Semarang.

Article Metrics

Abstract view: 216 times
Download     : 117   times

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Refbacks